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Abstract
Many real world applications make use of unsu-
pervised learning approaches (e.g. clustering),
data that arrives in an online fashion. In this pa-
per, we study the problem of online clustering
within a regret minimization framework. Build-
ing on prior work, we first investigate and im-
plement a Follow-The-Leader (FTL) k-means
algorithm—in an attempt to reproduce results in
(Cohen-Addad et al., 2021)—and find differences
in the regret dynamics for the MNIST dataset and
for their worst-case scenario. We then expand the
analysis from FTL k-means to a FTL Gaussian
Mixture Model (GMM) and provide strong intu-
ition that the worst-case linear regret still holds.
Empirically, we demonstrate interesting differ-
ences in regret dynamics for MNIST between a
GMM with spherical and diagonal covariance ma-
trices.

1. Introduction
One of the main problems in unsupervised learning is iden-
tifying structure within data such that similar data points
are grouped together. Consequently, the clustering of data
points represents a fundamental and challenging task where
even classical approaches, e.g. k-means, are known to be
NP-hard optimization problems (Vattani, 2009).

In this report, we consider clustering in an online setting
where data points arrive sequentially—i.e. one at a time—
and needs to be assigned to a cluster (new or existing) with-
out future knowledge of the remaining data points. The
online variant of this problem is motivated by numerous
applications in fields such as online dynamic pricing (Miao
et al., 2019), video reconstruction (Yang et al., 2014) and
real-time speech recognition (Higuchi et al., 2017).

It is customary to analyze algorithms operating in online set-
tings with respect to either regret or competitive ratio. The
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former quantifies the difference in cost between the algo-
rithm and the optimal offline static solution (Orabona, 2019),
while the later quantifies the difference in cost between an
online algorithm and the optimal offline dynamic solution
(Albers, 1996). Following prior work (Cohen-Addad et al.,
2021), in this report, we choose to perform a regret based
analysis. As there are several clustering objective functions,
a natural starting point for our work is the k - means and
GMM objectives.

2. Related Work
While online clustering is not a particularly novel concept,
the vast majority of the current literature mainly addresses
four main themes.

The first theme is the efficient updating of an online cluster-
ing model as new data comes in. Ideally, instead of storing
all incoming data points and retraining the model each time
a new data point comes in, it would be preferable to instead
derive some update rules for the model. In (Declercq &
Piater, 2008), describe using 2 levels of GMMs, the former
to approximate the past data stream and the latter to manage
updates based on new data points. On the other hand, in
(Song & Wang, 2005) and (Hasan & Gan, 2009), algorithms
for updating a GMM based solely on new data points and
the current model parameters are described.

Other papers discuss the dynamic updating of the number
of clusters in an online algorithm (i.e. in scenarios where
the number of clusters is not known in advance). For online
GMMs this is usually done by merging or splitting clusters
based on a certain measure. In particular (Song & Wang,
2005) considers the W and Hotteling statistics to determine
when to merge components whereas (Ueda et al., 1998)
considers the density of clusters.

The third theme is the application of online clustering to
various real world problems. (Yang et al., 2013; 2014)
both describe the use of online GMMs for reconstructing
blurry videos (here, data points have some level of time-
dependence and are thus weighted by how far ago they
occurred when training the model). On the other hand (Gen-
tile et al., 2014) discusses online clustering in the context of
a bandit problem where it is assumed that users of a recom-
mendation system can be grouped into clusters with similar
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taste. On the business side, (Miao et al., 2019) provides
an algorithm for pricing items with low sales by grouping
them into clusters to determine appropriate pricing. The
algorithm is then used on real items being sold on Alibaba
and shown to provide a measurable increase in revenue.

Finally, a few recent papers discuss online clustering within
a regret minimization framework. (Cohen-Addad et al.,
2021) examines the performance of an online k-means algo-
rithm based on Follow The Leader (FTL) from a theoretical
perspective (deriving a counter-example that has linear re-
gret) and a practical perspective (computing the regret of the
algorithm on various artificial examples as well as MNIST).
(Choromanska & Monteleoni, 2012) on the other hand pro-
vides various examples of online clustering algorithms using
an ensemble of experts (various types of different k-means
algorithms) and perform a regret-based analysis on the per-
formance of these algorithms.

However, as of yet and to the best of our knowledge, there
is no paper that examines online GMM models within the
context of a regret minimization framework. As such, by
extending the regret analysis of previous papers to additional
model classes (GMMs) the work in this paper is novel.

Our Contributions: As a starting point for our analysis
we attempt to reproduce the results of (Cohen-Addad et al.,
2021) for online k-means and find our implementations
yields notable differences. We then extend our empirical
analysis to online GMMs and find they mostly perform sim-
ilarly to k-means. Specifically, we focus on studying the
application of a prominent algorithm known in the liter-
ature as Follow-The-Leader(FTL) in online k-means and
online GMM. We assume that FTL has oracle access to a
k-means solver and a GMM solver. Despite this we show
the existence of a counter example—in an analogous man-
ner to the counter example in online k-means—where the
online GMM incurs linear regret. Finally, we also perform
experiments for FTL k-means and FTL GMM on natural
datasets (generated Gaussian clusters, MNIST and 2 other
well-known datasets).

3. Background
Regret is defined as R(ω1:T ):

R(ω1:T ) =

T∑
t=1

ft(ωt)−min
u∈S

T∑
t=1

ft(u), (1)

where ft(ωt) is the loss incurred at time t by taking action
ωt. In FTL, we seek to minimize regret by playing the
strategy that minimizes loss over past rounds (i.e. finding the
optimal strategy based on the data we’ve so far). Specifically,
FTL selects ωt as a solution to the following optimization
problem:

ωt = argmin
ω∈S

t−1∑
i=1

fi(ω). (2)

4. Online Setting
In this section, we first highlight the online k-means setting
proposed in Cohen-Addad et al. (2021). Inspired by this we
propose a novel setting to study the performance of online
GMMs.

Online k-means At time t the online algorithm proposes a
set of k candidate cluster centres, Ct = {ct,1, . . . , ct,k} be-
fore observing the data point xt with the goal of minimizing
regret defined as:

regretT =

T∑
t=1

lt(Ct, xt)− min
C:|C|=k

T∑
t=1

min
c∈C

||xt−c||22 (3)

where the loss incurred by the algorithm at time step t is:

lt(Ct, xt) = min
c∈Ct

||xt − c||22 (4)

Online GMM At time t the online algorithm pro-
poses a set of k Gaussians with parameters, θt =
{(πt,1, µt,1,Σt,1), . . . , (πt,k, µt,k,Σt,k)} before observing
the data point xt with the goal of minimizing regret defined
as:

regretT =

T∑
t=1

− log p(xt|θt)−min
θ

( T∑
t=1

− log p(xt|θ)
)

(5)
where the loss incurred by the algorithm at time step t is:

lt(θt, xt) = − log p(xt|θt) = − log{
K∑

k=1

πt,kN (xt|µt,k,Σt,k)}

(6)

5. FTL k-means and FTL GMM - Linear
Regret Worst Case

In this section, we demonstrate a counter example that
achieves linear regret for FTL k-means and FTL GMM.
For FTL k-means, this comes from the following theorem.

Theorem 1. (Cohen-Addad et al., 2021, Theorem 2.3.) FTL
obtains Ω(T ) regret in the worst case, for any fixed k ≥ 2
and any dimension.

To show this, they construct the following counterexample.
Intuitively, the data stream consists of points that are placed
in three locations δ, 0, (1 − δ) for some δ < 1

4 . In each
round we want to find k = 2 optimal clusters. As proven
in Theorem 1 stated above, the optimal clusters are either
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a (−δ) - clustering or a (1 − δ) - clustering. Consider a
(−δ) - clustering as the scenario where all points at −δ are
assigned to one cluster also at −δ, and the remaining points
belong to the other cluster. Similarly, let (1− δ) clustering
be the case if all the points at (1− δ) belong to one cluster
at 1− δ, and all other points to the other cluster.

Figure 1. FTL k-means - Linear regret from (Cohen-Addad et al.,
2021)

Now consider a sequence where the initial point is at (1− δ)
and then we alternate between adding points between −δ
and 0 (see Figure 2). In this case, while initially the optimal
clustering will be at (1 − δ) (see Figure 2) there exists a
moment t2+1 where the optimal clustering will be a (1−δ)
clustering. However, since the algorithm Follow the Leader
makes decision based on previously seen rounds, in round
t2 + 1 the algorithm will propose −δ clustering, leading
to a significant loss in this round. This type of loss can
be periodically repeated and which leads to linear regret
incurred by Follow the Leader, graphically represented in a
staircase pattern.

−δ 0 1 − δ
t1

⋮ ⋮

t2

⋮ ⋮{ {n n

{n {n
t2 + 1

Figure 2. Constructed counter example

Note: While (Cohen-Addad et al., 2021) propose the

counter example in Theorem 1, they do not derive the value
t2 in their provided counter example. However, from the
Figure 1. we can conclude that the ”jump” occurs at every
400 steps for a δ = 0.1 as reported in Cohen-Addad et al.
(2021). Our experiments, however, show a different value
for this repeated interval (see Figure. 4.), which we confirm
in our derivation.

Proposition 1. Given the counter example in Theorem 1.
the change in optimal clusters occurs every 324 steps for a
value of δ = 0.1.

Proof Sketch. Since the optimal solution within the counter
example is either a −δ clustering or a 1− δ clustering, as
previously proven in (Cohen-Addad et al., 2021) we want to
compare the losses of these two clusterings. A switch from
a (1− δ) clustering to a (−δ) clustering happens when the
loss of a (1− δ) clustering l(C(1−δ)) is greater than loss of
a (−δ) clustering l(C−δ).

l(C(1−δ)) =
nδ2

2
(7)

l(C(−δ)) =
n(1− δ)2

n+ 1
(8)

(Note: l(C(−δ)) is derived by finding the optimal point
S(see Figure 3) which is 1−δ

n+1 .) Then, it follows that the

switch happens when n > 2 (1−δ)2

δ2 − 1 with δ = 0.1 result-
ing in n = 162, which means the change in optimal clusters
occurs every 324 steps.

−δ 0 1 − δ{(1 − δ)x {(1 − δ)(1 − x)

S

Figure 3. Optimal point S

Implementation Details (FTL k - means): When we run
our experiments we ensure that we find the optimal solu-
tion of k - means using the following method. We exploit
the property that the optimal solution within the counter
example is either a −δ clustering or a 1− δ clustering, as
previously described and proven in (Cohen-Addad et al.,
2021).

Therefore in our implementation of k-means—in order to
make sure that we reach the global solution—we implement
the algorithm such that it operates with k = 1 and on data
points that are not at −δ (or conversely points that are not
at 1− δ). We compare losses for both these scenarios and
choose the clustering which results in a lower loss. The
second cluster is then the cluster where we assumed the
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loss is zero, —i.e. either the −δ cluster or the 1− δ cluster,
respectively.

Figure 4. FTL k-means - Linear Regret (our results)

Implementation Details (FTL GMM): While we observed
different time steps for our regret interval versus the regret
interval reported in (Cohen-Addad et al., 2021) we can see
that general staircase-like pattern is present. This observa-
tion, motivated us to try out the same counter-example but
with different time steps on FTL GMM. In the experiments
with Follow the Leader and GMM we use a time step of 18
steps.

To ensure that GMM finds an optimal solution (or close
to one) we test it with multiple intializations. Specifically,
we initialize GMM using all pairwise combinations among
30 starting means uniformly distributed in the interval [−δ,
1− δ] for both clusters as the optimal solution will contain
means between these two points.

Figure 5. FTL GMM - Linear Regret

Empirically, we observe approximately linear regret. These
experiments point to many interesting questions such as:

1. Why does the optimal solution switch every 18 time
steps for FTL GMM while k-means switches every
324 time steps?

2. What role does variance play in this counter example?
3. Why is the regret approximately linear for FTL GMM

but does not have the ”clean” staircase look of FTL
k-means.

Ideally, we would like to answer these interesting questions
in the future and prove theoretically that the counter example
yields linear regret for FTL GMM.

6. FTL k-means and FTL GMM - Natural
Datasets

We begin by attempting to replicate the results of (Cohen-
Addad et al., 2021) which experiments with FTL k-means
on 4 datasets. The first 3 are generated sets of Gaussian
clusters that are either well-separated (distance between
means is at least 3 standard deviations) or poorly separated
(distance between means is 0.7 standard deviations) and the
last is MNIST (Deng, 2012). Their findings then indicate
that despite FTL k-means poor worst-case performance,
they still manage to get logarithmic regret on each of these
datasets.

Figure 6. Original results from (Cohen-Addad et al., 2021)

6.1. FTL k-means Implementation

Unfortunately, the exact implementation details of (Cohen-
Addad et al., 2021) are not included in the original paper and
as a consequence we make reasonable assumptions when
details are left unspecified (e.g. the normalization described
below ensures the scale of regret values is roughly similar
to their paper).

For our experiments, in addition to their 4 datasets, we
add the well-known Iris (Fisher, 1936) and Wine (Forina,
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1988) datasets to further examine the performance on low-
dimensional, real-world datasets. The Iris dataset has 150
data points with 4 features belonging to 3 classes while
the Wine has 178 data points with 13 features belonging
to 3 classes. For the Gaussian clusters, we generate sets
of 2-dimensional clusters that meet their specifications. Fi-
nally, for each dataset, we normalize the data feature-wise
to be between 0 and 1 before dividing each value by

√
d,

where d is the feature dimensionality (the L2 distance scales
with dimensionality so this normalization helps ensure the
scale of regret is somewhat comparable between datasets).
Then, for each experiment on a dataset, a sequence of length
min(datasetSize, 1000) is chosen using random sampling
without replacement.

For our implementation of FTL k-means, we specify 2
solvers: the online solver and the optimal solver. Both
make use of Scikit-learn’s implementation of k-means (Pe-
dregosa et al., 2011) with k-means++ initialization with a
number of clusters equal to the number of classes of the
dataset (except for WellSepGMM4 where we only use 3
clusters). Due to computational constraints, we only use
10 random initializations for the online solver (though we
tested with 300 initially and it had little to no effect). For
the optimal solver, we use 300 random initializations as
specified in (Cohen-Addad et al., 2021).

6.2. FTL k-means Results

Using the parameters described above, our attempt to repli-
cate their exact results yields some minor differences in the
exact regret values we achieve for all datasets as well as
a major difference in the regret dynamics for the MNIST
dataset.

Figure 7. FTL k-means regret experiments on natural datasets

For the Gaussian clusters and the two datasets we added, we
replicate the finding of roughly logarithmic regret. However,
for MNIST, our experiments indicate that regret grows faster

than O(log(t)) but slower than O(t) (i.e. we still haven’t
hit the worst case). As shown in the graph below, obtained
by plotting the OLS solution to regrett = mx+ b where x
is either log(t),

√
t or t, regret on MNIST is very close to

O(
√
t).

Figure 8. The OLS solution to regrett = m
√
t+ b fits the actual

regret very well.

6.3. FTL GMM Implementation

For our experiments on FTL GMM, we use the datasets as
specified previously and once again create 2 solvers. Both
use Scikit-learn’s implementation (Pedregosa et al., 2011)
of a GMM with the same number of clusters as we used in
k-means (each of which is initialized using k-means++).

We specify a maximum of 100 iterations of EM (helps with
stability when there are only a few data points) and 5 ini-
tializations for the online solver and 100 for the optimal
solver (once again, varying this number had little effects on
the results). Finally, we use either a spherical covariance
matrix (σI where σ is a scalar) or a diagonal covariance
matrix (σI where σ is a d-dimensional vector). When com-
puting regret, we compare the online solver to the optimal
solver with the same restrictions (i.e. we compare the online
spherical GMM to an offline spherical GMM whereas we
compare the online diagonal GMM to an offline diagonal
GMM).

6.4. FTL GMM Results (General)

Using regret as specified in (6), for the non MNIST datasets,
FTL GMM gets roughly logarithmic regret for both spher-
ical and diagonal covariance matrices. Interestingly, this
result imitates the regret dynamics for FTL k-means de-
spite the higher capacity models and more sophisticated
loss function (though this is perhaps unsurprising for the
Gaussian clusters seeing as a GMM can perfectly fit them).
The close link between GMM and k-means (especially for
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a spherical covariance matrix) could potentially explain this
phenomenon. More surprising, however, is the finding that
these similarities do not extend completely to MNIST.

Figure 9. Results from running the same experiments with FTL
GMM (spherical)

Figure 10. Results from running the same experiments with FTL
GMM (diagonal)

6.5. FTL GMM Results (MNIST)

On MNIST, the spherical covariance matrix yields a regret
curve very similar to the one observed in k-means. Once
again, the resemblance of the result for the spherical co-
variance FTL GMM with the FTL k-means is unsurprising
given their close connection (a GMM with a spherical co-
variance matrix converges to k-means as σ → 0).

In fact, during experiments, the σ of each cluster was always
between 0.00001 and 0.0001. While the small scale of
σ is partially due to data normalization which lead most
feature values to be small, the small values of σ also help
explain the closeness in performance between the 2 models.
Nonetheless, more work is needed to determine why the
σ parameter in a spherical GMM tends towards 0 for the
MNIST dataset.

Figure 11. Spherical FTL GMM yields similar regret dynamics as
the k-means algorithm on MNIST

The diagonal covariance matrix on the other hand has a
regret curve that tapers off towards the end, approaching
logarithmic regret, a novel and interesting finding. An ini-
tial assessment could indicate that this is due to the higher
capacity model which can then better fit the data. However,
in an online setting, adding capacity to a model has a dual
effect. While it does allow the online solver to better fit
the data, it also improves the quality of the the static offline
solution we are comparing it to. This tradeoff, at least in this
case, seems to favor the online solver as the improvements
in its solution are larger as time goes on when compared to
the improvement of the offline solution.

Figure 12. Diagonal FTL GMM approaches logarithmic regret on
MNIST

7. Discussion
Beginning with the worst case analysis, we confirm the re-
sults of (Cohen-Addad et al., 2021) for FTL k-means and
even derive analytically at which interval the regret steps
should occur. Then, expanding to FTL GMM with a spheri-
cal covariance matrix, we demonstrate experimentally that
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the counter example still holds and provide strong intuition
as to why this should be the case (though future work is
required to prove this). As such, our findings provide further
evidence that online clustering algorithms based on vanilla
FTL struggle to provide sublinear regret in the worst case.
Further research on other forms of FTL (for example regu-
larized FTL) is needed to investigate whether a better worst
case bound is possible.

After, considering more natural datasets, we mostly repli-
cate the findings of (Cohen-Addad et al., 2021) and show
that each of these 3 models (k-means, spherical GMM and
diagonal GMM) yield roughly logarithmic regret on most
datasets. The results are more interesting when we exam-
ine MNIST. First of all, we fail to replicate their finding of
logarithmic regret, instead getting regret that more closely
resembles O(

√
t). We arrive at the same result when exam-

ining FTL GMM with a spherical covariance matrix.

These findings suggest that these FTL-based clustering al-
gorithms do not perform as well as previously thought on
all natural datasets. Further research is however required
to determine whether this poor performance on MNIST is
due to some inherent structure of the data or potentially
from the high dimensionality of the dataset. These results
also provide additional evidence of the close link between
k-means and GMM with a spherical covariance matrix as in
all cases they yielded very similar regret dynamics.

However, when switching to FTL GMM with a diagonal
covariance matrix, we get regret dynamics that tend towards
logarithmic regret. This finding exposes the interplay be-
tween model capacity and regret, indicating that higher ca-
pacity online models might perform better (even when they
are being compared to a similarly higher capacity offline
model). More work is needed to determine exactly why this
is the case or perhaps if it is just some characteristic unique
to diagonal GMM.

Finally, these direct translations from offline to online clus-
tering yield much to be desired in terms of performance.
As noted in the section on experiments on natural datasets,
sacrifices often had to be made to perform these experiments
in a reasonable amount of time (unsurprisingly, retraining
the model each time a new data point comes in is rather in-
efficient). Future work into more computationally efficient
online clustering methods is needed to see whether similar
or better regret dynamics can be obtained while improving
clustering speed.
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